MATH 504 HOMEWORK 9

Due Friday, December 7.

This homework is worth two regular homework sets.

Problem 1. Let T be a normal Suslin tree, and let $(\mathbb{P}_T, <) = (T, >)$. Show that although \mathbb{P}_T has the countable chain condition, $\mathbb{P}_T \times \mathbb{P}_T$ does not. Hint: for every $x \in T$, pick two immediate successors p_x, q_x of x. Look at the set $\{(p_x, q_x) \mid x \in T\} \subset \mathbb{P}_T \times \mathbb{P}_T$.

Problem 2. Suppose that \mathbb{P} and \mathbb{Q} are two c.c.c. posets. Show that the following are equivalent:

- (1) $\mathbb{P} \times \mathbb{Q}$ is c.c.c;
- (2) $1_{\mathbb{P}} \Vdash_{\mathbb{P}} \check{\mathbb{Q}} \text{ is } c.c.c;$
- (3) $1_{\mathbb{Q}} \Vdash_{\mathbb{Q}} \check{\mathbb{P}}$ is c.c.c;

Problem 3. Let \mathbb{P} be a poset such that for every $p \in \mathbb{P}$, there are incompatible $q, r \leq p$. Suppose G is \mathbb{P} -generic. Show that $G \times G$ is not $\mathbb{P} \times \mathbb{P}$ -generic.

Problem 4. Let $\mathbb{P} \in V$ be a poset, and let \mathbb{Q} be a \mathbb{P} name for a poset, i.e. $1_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ is a poset. Suppose that G is \mathbb{P} -generic over V, and that H is $\dot{\mathbb{Q}}_{G}$ -generic over V[G]. Show that $K := G * H = \{(p, \dot{q}) \mid p \in G, \dot{q}_{G} \in H\}$ is $\mathbb{P} * \dot{\mathbb{Q}}$ -generic over V.

Problem 5. Suppose that $\mathbb{P} * \dot{\mathbb{Q}}$ has the κ -chain condition. Show that \mathbb{P} has the κ -chain condition, and $1_{\mathbb{P}} \Vdash "\dot{\mathbb{Q}}$ has the κ -chain condition".

Remark 1. The converse is also true.

Problem 6. Suppose that \mathbb{P} is κ distributive, and $1_{\mathbb{P}} \Vdash ``Q`$ is κ -distributive". Show that that $\mathbb{P} * \dot{\mathbb{Q}}$ is κ -distributive.

Problem 7. Suppose that $\mathbb{P} = \langle \mathbb{P}_{\beta}, \hat{\mathbb{Q}}_{\beta} \mid \beta < \alpha \rangle$ is an iteration of length α , and $\mathbb{P}_{\beta} = \mathbb{P}_{\alpha} \upharpoonright \beta$ for $\beta < \alpha$. Show that if G_{α} is \mathbb{P}_{α} -generic and we define $G_{\beta} := \{p \upharpoonright \beta \mid p \in G_{\alpha}\}$, then G_{β} is \mathbb{P}_{β} -generic and $V[G_{\beta}] \subset V[G_{\alpha}]$. (Note that we are not assuming finite support here, just the general definition of an α -iteration)

Problem 8. Let κ be a regular uncountable cardinal and \mathbb{P} be a κ -closed poset. Show that \mathbb{P} preserves stationary subsets of κ , i.e. if $S \subset \kappa$ is stationary in the ground model, then S remains stationary in any \mathbb{P} -generic extension.

Hint: Given S, a name \dot{C} , and p, such that $p \Vdash `\dot{C}$ is a club subset of κ ", show there is a sequence in the ground model $\langle p_{\alpha}, \gamma_{\alpha} \mid \alpha < \kappa \rangle$, such that:

- $\langle p_{\alpha} \mid \alpha < \kappa \rangle$ is a decreasing sequence below p,
- $\langle \gamma_{\alpha} \mid \alpha < \kappa \rangle$ is a club in κ ,

MATH 504 HOMEWORK 9

• each $p_{\alpha} \Vdash \gamma_{\alpha} \in \dot{C}$.

Then use stationarity of S in the ground model.

Problem 9. Let $S \subset \omega_1$ be a stationary set. Define $\mathbb{P} := \{p \subset S \mid p \text{ is closed and bounded}\}$, and set $p \leq q$ if p end extends q i.e. for some $\alpha, p \cap \alpha = q$.

- (1) Show that \mathbb{P} is ω -distributive, i.e. if $p \Vdash \dot{f} : \omega \to ON$, then there is some $q \leq p$ and a function g in the ground model, such that $q \Vdash \dot{f} = \check{g}$. Note that this implies that \mathbb{P} adds no countable subsets of ω_1 , and hence it preserves ω_1 .
- (2) What is the best chain condition for ℙ? Justify your answer. Use that and the above to show that ℙ preserves all cardinals.
- (3) Suppose that $T := S \setminus \omega_1$ is also stationary. Let G be a \mathbb{P} -generic filter. Show that in V[G], T is nonstationary.

Remark 2. The above is an example of a forcing that destroys a stationary set, without collapsing cardinals. On the other hand you cannot use forcing to destroy a club set. More precisely, if $V \subset W$ are two models of set theory and $V \models "D$ is club in κ ", then $W \models "D$ is club in κ ". Note that in the above problem it was important that S was stationary; i.e. you cannot add a new club through a nonstationary set.

 $\mathbf{2}$